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A two-parameter  family of solutions of Einstein's eqnations, correspond- 
ing to distr ibut ion valued stress-energy tensors with support  on a (pair 
of intersecting) null hypersurface(s), is presented. They describe the col- 
lision of infinitely th in  shells of null dust colliding with shells of the same 
kind a n d / o r  gravitational ploale waves. For a subclass of this new family 
of solutions, the typical spacellke singularity tha t  develops after the col- 
lision and forms the future boundary of the interaction region gives its 
place to a nonsingular Killing-Cauchy horizon. 

1. I N T R O D U C T I O N  

The process of collision between shells of null dust (a gas of massless par- 
ticles which follow a congruence of null trajectories) has a t t racted a lot 
of interest recently [1-8], especially after the discovery of Chandrasekhar 
and Xanthopoulos [1] that  the product  of such a kind of collision may 
be a shell of "stiff mat ter" ,  i.e. a perfect fluid with an equation of state 
p (pressure) = p (energy density). 

The case of a pair of impulsive (infinitely thin) shells of null dust 
colliding with each other was first considered by Dray and 't Hooft [4]. 
The exact model constructed by them showed that  the above process has 
several features in common with the collision of a pair of impulsive grav- 
itational plane waves. Each pulse acts as a focusing lense for the rays 
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corresponding to the other; a Coulomb-like gravitational field appears in 
the "region of interaction"; a space-time singularity is formed along a 
spacelike hypersurface which forms the future boundary of the region of 
interaction. 

The equally interesting process of an impulsive shell of null dust collid- 
ing with an impulsive gravitational plane wave was considered by Babala 
[9]. Tsoubelis [10], on the other hand, showed that the Dray-'t tIooft and 
Babala models referred to above form the first two members of a class of 
solutions which can be obtained by choosing appropriately the values of 
the parameters which characterize the well known Szekeres [11] family of 
"colliding plane gravitational waves" solutions. The rest of the solutions 
obtained in [10], which will be referred to hereafter as Paper I, represent 
the collision of an impulsive plane shell of null dust with a plane gravita- 
tional wave having different types of profile such as shock, with a smooth 
wavefront etc. 

In the present paper we extend the results of Paper I in the following 
sense. Using the three-parameter family of the Einstein vacuum equations 
obtained by the present authors recently [12], we derive a one-parameter 
generalization of the family of solutions with distribution valued stress- 
energy tensor having its support on a (pair of intersecting) null hyper- 
surface(s), which was obtained in Paper I. This generalization leads to a 
two-parameter class of models, the general member of which represents the 
following physical process. An impulsive plane shell of null dust, riding a 
plane gravitational wave which has both an impulsive and a shock com- 
ponent, propagates in a flat region of space-time and, eventually collides 
with either a similar type of shell or a gravitational wave incident from the 
opposite direction. However, the particular models that obtain by tun- 
ing the two free parameters appearing in the general solution cover a wide 
range of physically distinct cases, such as shell-shell, shell-impulsive wave, 
(shell+impulsive wave)-(shell+impulsive wave) collision. This allows for 
several aspects of the process of collision involving impulsive shells of null 
matter to come to the fore. Moreover, a one-parameter subfamily of so- 
lutions is obtained in which no space-time singularity appears along the 
"focusing hypersurface". Thus, a closer relation is established between 
collision involving impulsive shells of null dust, on the one hand, and colli- 
sion between gravitational waves, on the other, because, for the latter type 
of collisions, the existence of solutions which do not develop a spacelike 
singularity in the region of interaction is already well established [12-17]. 

The paper is structured as follows. In Section 2, we present the basic 
geometric features (metric, Ricci tensor, Weyl scalars) of the space-time 
models employed in our later construction. This is followed by a short 
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presentation of the Tsoubelis-Wang family of vacuum solutions mentioned 
above, as well as of the manner in which the Khan-Penrose [18] extension 
algorithm leads to the appearance of null mat ter  sheets in the space-time 
manifold. In Section 3, we present the new two-parameter family of mod- 
els which represent collisions involving impulsive shells of null dust and 
gravitational plane waves. The paper closes with a detailed analysis of 
the physical features and singularity structure of a series of representative 
models which are obtained by assigning a particular set of values to the 
pair of parameters characterizing the above family of solutions. 

2. THE FIELD EQUATIONS AND THEIR SOLUTION 

For the space-time models to be considered in the following one can 
find a coordinate system z~ = (z ~ x ~, x 2, x 3) = (u, v, x, y) in which the 
metric takes the form 

ds 2 = 2 e - M  dudv  _ e - U  (eV dx  2 + e - V  dy 2) (1) 

where M, U and V are functions of the null coordinates u and v only. This 
means that the models under consideration have a hypersurface orthogonal 
pair of spacelike Killing vector fields, (0 , ,  0~). 

The nonvanishing components of the Ricci tensor R~u corresponding 
to the above metric are given by 

= - � 8 9  oo 

Rw = - �89 - U,,2 + 2 U , , M , ,  - V,,~) 

Ru~ = R~. = - l ( 2 M , ~ v  + 2 U , ~  - U,~,U,v - V,~V,~) 
1 ~ M - U + V t o r r  R~x = ~ ~v,,~,, - 2V,,~, - 2U, .U,~ + U,~,V,v + U,~,V,~,) 

Ryy  1 ~ M - U - V  [orr = 7~ t~u,, ,~ + 2 V , ~  - 2U,~,U,, - U,~,V,, - U,~V,~) (2) 

where U,u =- OU/Ou,  U'uv - 02U/Ou@v,  etc. 
A convenient expression of the conformal or Weyl curvature tensor 

C~,ZT~ corresponding to (1) is provided by the Weyl scalars k~A, A = 
0, 1,2, 3, 4. In terms of the null tetrad (g z, n ~', rn ~, ~ ) ,  where 

~ = eM125~, n~ = eM/2~o~ , 

= + 

(3) 
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the Weyl scalars are given by 

9 o  - - C e , / 3 v , g C ' m Z t T m  ~ 1 M = --~e [~w + (M,, - U,~)~d 

91 ~ - C a p v , U ~ n P g V m  ~ = 0 

9 2  =- - � 8 9 1 7 6  * - g a n a m T m * )  = -~el M ,  M,(... u,~ --  U, uv + V, u V ,  v )  

9 3  ~ C ,~ . r6g~n l~n ' r r :n  ~ = 0 

9 4  - -  - C a / ~ 7 , n a ( n P n ' Y m  ~ 1 M [ V  I = - T e  t,'~,,, + (M,u - U,,)V,,,] (4) 

Now let (a, kl, k2) be a triad of real parameters, the range of the last 
two being restricted by the conditions 

2 2 
2m = > 1 and 2n = > 1 (5) 

2 - ( k l  - k ~ ) ~  - 2 - ( k l  + k ~ ) ~  - 

Furthermore, let 

b -= (a + kl) ~ 1 

/~_=(a+/c2) 2 1 

1 = ( a  - k l )  2 - 

~' = (a  _ k ~ ) ~  ~ ( 6 )  
4" 

Then, the expressions 

e - M  = R - 2 + l / ' ~ S - 2 + l / m ( 1  - ~/)~(1 + ,)~(1 - #)~(1 + #)'r, 

e - U  = T ,  

1 ~l~k~ 1 - p  k2 
(7) 

where 

R = V / 1  - v 2m,  S - X / 1  - u 2'* , 

r I - -  u n R  + v m S ,  # = u ' ~ R  - v ' -"S ,  

T = X/(1 - rfl) (1 - p 2 )  = 1 - u 2'~ - v 2m,  ( 8 )  

provide a three-parameter family of exact solutions of the vacuum field 
equations R~ u = 0. This was shown in [t2], which wilt be referred to here- 
after as Paper II. (Please note a slight change of notation: the parameters 
5i appearing in Paper II are denoted by ki in the present paper). On the 
other hand, the metric defined by eqs. (7) above is an explicit version of 
the solution which results from setting A~ = 0, di = 0 for i > 2, in eq. (13) 
o f  [17] .  
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As it stands, the solution given by eqs. (5)-(8) is valid only in Region 
IV of Fig. 1, i.e. in the interior of that region of space-time which is bounded 
by the hypersurfaces u = 0, v = 0 and T = 0. However, an extension of the 
above solution toward the past of Region IV can be immediately obtained 
using a) the assumption Rau = 0 in the region of interaction and b) the 
technique of Khan and Penrose [18]. The latter consists of letting 

u ----, u H ( u )  and v ~ v H ( v ) ,  (9) 

H being the Heaviside unit step function, in the metric coefficients given 
by (7). 

The fact that  the vacuum field equations are also satisfied in Regions 
I-III of Fig. 1, as a result of the above substitution, is easily verified. 
However, this is not the case, in general, along the hypersurfaces u = 0 
and v = 0 separating Regions I-IV from each other. 

In order to see how this comes about in the general case, let us return 
to (1) and make the following assumptions. The metric coefficients given 
by (1) have finite limits as u --~ 0 + and/or  v --~ 0 + and, after making the 
substitutions (9), these coefficients satisfy the vacuum field equations on 
both sides of the hypersurfaces u = 0 and v = 0. Then, it follows from 
eqs. (2) that  

v) p ~ ,  = cOU(u, v H ( v ) )  /i(u), P ~  = a(v), (10) 
Ou Ov 

where 5 denotes Dirac's delta function, and the rest of the components of 
the Ricci tensor vanish everywhere. Combining (10) with Einstein's field 
equations, we conclude that,  in general, the stress energy tensor Tx,  does 
not vanish along the hypersurfaces u = 0 and v = 0. 

Returning to the solution given by (5)-(8), we find that  the field 
equations and (10) imply that  

,~T~., = - P ~ ,  - 2n  u2" - l , 5 (u )  
1 - v 2mH(v )  (11) 

and 
~Tvv = - t G v  = 2 m v 2 m - 1 6 ( v )  

1 - ( 1 2 )  

where ~ = 8zrG/c 4 is Einstein's gravitational constant. Therefore, when 
2m r 1 and 2n r 1, the separation hypersurfaces u = 0 and v = 0 are 
matter-free and, as shown in Paper II, the corresponding models admit 
the following interpretation. 
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Two pulses of plane gravitational waves propagate toward each other 
in Region I, which is flat. The pulses have, in general, different profiles and 
their leading edges are represented by the null hypersurfaces u = 0 and 
v = 0, respectively. At (u, v) = (0, 0) the waves collide and the outcome 
of this collision is reflected in the structure of Region IV, the "region of 
interaction." In general, the mutual focusing of the wave pulses leads to the 
development of a space-time singularity along the "focusing hypersurface" 
T = 0 which forms the future boundary of Region IV. 

If, on the other hand, either 2m or 2n equals unity, then at least one 
of the separation hypersurfaces is occupied by matter in the form of "null 
dust." This being the case of interest in the present paper, we turn to an 
analysis of the subfamily of models for which 

2 n = l ~  ~ k l = - k 2 = - k .  (13) 

2. COLLISIONS INVOLVING IMPULSIVE PLANE SHELLS OF NULL 
DUST AND GRAVITATIONAL PLANE WAVES 

Combining (11) and (13) we find that 

~(u) (14) nT,~ = 1 - v2"*H(v) 

This means that, in all the space-time models to be considered in the 
following, an infinitely thin shell of null dust propagates along u = 0, 
i.e. toward the left in Fig. 1. 

The combination of (4)-(8) and (13), on the other hand, leads to the 
following expressions for the nonvanishing Weyl scalars in Region IV: 

,~ 2 m - 2  [ b( av3m + k S 3 )  

ka[ (2a + k)v '~ + (a + 2k)Sl '[ 
(15) 

(v'~ + S) ~ f 
q~V (u, v) - 2b mv2"~-I 2kamv m-x 

T2 + S(vm + S) 2 (16) 

~4V (u ,v  ) = 2b(kv am + aS 3) _ 2ka[ (2a + k )S  + (a + 2k)v "~] (17) 
S a T  2 S3(v m 3 L S)  2 

In writing down the above expressions for @A, a factor of exp(M) was 
omitted. This is equivalent to replacing the Weyl scalars kI/A with Szekeres' 
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F i g u r e  1 The  (u,  v)-plane of  the  space- t ime models  descr ibed in the  tes t .  
An  infinitely th in  sheU of null dust ,  accompanied  in some models  by gravi ta t ional  radi- 
ation, is incident  f rom the  r ight  along u = O. At (u,  v) = (0, O) it collides wi th  a similar 
k ind of shell, or  a gravi ta t ional  p lane  wave, incident  f rom the  left along v = O. 
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[11] "scale invariant Weyl scalars" ~A ~ because II/A0 = exp(- -M)~A,  in 
the present case. The above practice will be maintained in the following 
discussion, and so the term "Weyl scalars" will refer to the q~A~ 

On the basis of (15)-(17) we can, firstly, make the following general 
statement.  As T --+ 0 +, while u # 0 and v # 0, a curvature singularity 
develops in all of our models, except in those for which 

b = 0 ,  , a + k = + l / 2 .  (18) 

In the latter case, one of the Killing vectors 0~, By becomes null as T --* 0 + 
(equivalently, as q ~ 1-) ,  as can be seen by combining (7), (8), (13) and 
(18). Thus, when (18) holds, the space-like singularity that otherwise 
develops along T = 0 gives its place to a Killing-Cauchy horizon beyond 
which the metric can be analytically extended. 

Moreover, using (15)-(17) and the Khan-Penrose substitutions (9) we 
can immediately obtain the Weyl scalars in Regions I-III. They are given 
by 

�9 = o, (19) 

2m 1)v4m_ 2 @II(v )  -- (1 - v2m) ~ [ma(4a2 - + 12ka2mv3"~-2  

+ 3a(2m - 1)v 2m-2 + k ( m  - 1)v m-2] (20) 

~ / I  = 0, when A # 0, (21) 

a(4a ~ -  1) ql l i  I 
k ~ / ' ( u ) -  2 - 0 " - u ~  and = 0 ,  when A # 4 .  (22) 

In order to determine the Weyl scalars in the neighborhood of u = 0 
or v = 0, on the other hand, we must return to (4). Using this equation 
and (9), we find the following behavior in the neighborhood of that portion 
of the u = 0 or v = 0 hypersurface along which the pair of regions listed 
on the first column meet. 

I -  I I I  : qtI4 - I I I  = H(u ) r  + a S ( u )  (23) 

a -4- kv  m 5(u)  (24) 
I I - I V  : q2 I I - ' y  = H ( u ) ~ I 4 V ( o , v ) +  l_v2----- ~ 

k~ I I - I w  = H(u)k~1V ( o , v )  

and q/o continuous (25) 

I -  I I :  % ' - "  = 
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I I I  - -  I V  : 

+ 2m(kv  m-1 + av2m-1)5(v) (26) 

~IolI-IV = H(v)~IoV (u, o) 

-4- 2m(kvm-lSl _ u q- av2m-1) 5(v) (27) 

~ l I , - , y  --_ g(v)k~12V (u, o) 

and ~P4 continuous. (28) 

At this point we have at our disposal all the quantities that  are nec- 
essary for determing the physical character of our models. The latter, 
however, is brought out most clearly by considering the cases that  corre- 
spond to distinct values of the parameter m separately, a task to which we 
now turn. 

Case A: m = 1/2 
When m = 1/2(k = 0), (12) and (14) lead to 

5(u) 
_ ~(v) ~ T ~  - (29) 

~T~,, 1 - u H ( u ) '  1 - v H ( v ) '  

while from (15)-(28) we find that  

and 

a(4a 2 -  1)H(v) aS(v) (30) 
~ 0 =  2 1 1 -  uH(u) - v H ( v ) ]  2 + 1 - uH(u)' 

a(4a 2 -  1)H(u)  a6(u) 
~4 = 211 - uH(u) - v H ( v ) ] '  + 1 -  vH(v)'  (31) 

(4a 2 - 1)H(u)H(v )  
~2 = 411 - u H(u)  - v H(v )  ]2 (32) 

It is clear from (29)-(32) that,  provided a +s 0, -4-1/2, the m = 1/2 
models represent the symmetric collision of a pair of impulsive shells of 
null dust each of which is accompanied by an impulsive-plus-shock gravi- 
tational plane wave. The same equations show that,  following the collision, 
the null dust shells, as well as the gravitational waves, begin to focus and a 
Coulomb-like gravitational field (represented by ~2) appears in Region IV. 
The strength of this field grows beyond all bounds as one approaches the 
spacelike hypersurface u + v -- 1 and, as a result, a space-time singularity 
forms along the future boundary of the region of interaction. 
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Case A - l :  a = O. 

In this case ~0 = ~4 = 0 and, therefore, the collision involves a pair of im- 
pulsive shells of null dust, only. The effects obtained following the collision 
are as described in the previous paragraph and have the same character as 
those that  arise after the collision of a pair of impulsive gravitational waves 
[18]. The present subcase was first considered by Dray and 't ttooft in [4] 
where the reader can find more details regarding the singularity structure 
of the corresponding metric. 
Case A-2:  a = 4-1/2. 
Now, the null dust shells of the previous subcase are accompanied by 
impulsive gravitational waves. As seen from (30)-(32), the result of this 
superposition is that  no Coulomb-like gravitational field appears in Region 
IV and no space-time singularity develops along the hypersurface u + v  = 1. 

Space-time remains flat everywhere outside the null hypersurfaces u = 0 
and v = 0. The only effect that  obtains in this kind of collision is the 
mutual focusing of the participants. 

The quenching of the ~ or Coulomb-like component observed in the 
present subcase illustrates the crucial role played by non-vanishing stress- 
energy sources in the outcome of a collision of plane gravitational waves. 
As shown by Szekeres [11], in the absence of such sources, the appearance 
of a Coulomb-like field is an invariable feature of the collision process and 
this holds even when the collision involves only a pair of impulsive waves, 
as illustrated by the well known solution of Khan and Penrose [18]. 

Before turning to the asymmetric solutions which correspond to m > 
1/2, let us note that  the totality of the Case A metrics were first obtained 
by Stoyanov [19]. Stoyanov, however, interpreted them as representing the 
collision of a pair of (empty) gravitational waves. That  this interpretation 
cannot be supported was first noted by Nutku [20] and is made clear from 
the analysis presented above. 

Case B: m = 1 
When m = 1 (k = c/2 _-- =kl/2), we find that  

T.,  = 0 (33) ~ T . ~  - 1 - v 2 g ( v )  ' 

and 

~1~ - ' H  = �89 2 - 1)H(u) + aS(u) ,  

g11o - 1 I  = 6 a l l ( v )  + eS(v) ,  

~ I I - 1 v  _ a( 3v2 + 6eav + 4a 2 - 1) 
- 2(1 - v2) 2 H ( u )  + 

2 a - F e v  

2 ( 1 - v  2) 

(34) 

(36) 
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r  _ 6 a l l ( v )  ~- eS(v)  

1 -  u V ' l -  u 
(37) 

From (33)-(35), it is clearly seen tha t  the general Case B model rep- 
resents the same type of collision as the typical Case A model, except for 
the fact that ,  now, the gravitat ional wave incident from the left is not ac- 
companied by a shell of null dust. According to (33), (36) and (37), on the 
other hand, both  the null dust shell and the gravitational waves involved 
in the collision end up in a singularity which stretches all along the arc 
u = 1 - v 2, 0 <: v <: 1, of the ( u , v )  plane, unless a = 0 , - c  [cf. (18)]. 
Case  B - l :  a = O. 

In this case, (34) and (35) reduce to ~4 I - I I I  = 0 and ~0 z-I1  = r 
respectively. In fact, one easily finds that  the only nonvanishing Weyl 
scalars are ~0 and ~4, which are given by 

r 1Ir ,y) __ 5vH(v)~(~) (38) 
~O(U,V) -- V / 1 -  u H ( u ) '  2 ( 1 -  v 2) " 

Therefore, this model represents the collision of an impulsive gravitat ional 
plane wave with a shell of null dust of the same type. Space-time is flat in 
all Regions I-IV and the only effect of the collision is the mutual  focusing 
of' the wave pulse and the null mat te r  shell. The corresponding metric was 
first obtained by Babala  [9], who also considered its extension beyond the 
u = 1 - v 2 hypersurface. 
Case  B-2:  a = e ' /2  __- ~=1/2. 
Now, (34) and (35) reduce to 

�9 i - I "  = �89  (39) 

not avoided. 
Case  B - 3: a = - 2 k .  

Since in this case 

and 

�9 ~ - " '  = ~ H ( u )  - ~5(u) (41) 

g2/-II = - 6 e l l ( v )  + eh(v), (42) 

and 

�9 0 ~ - "  = 3~'H(v) + ~ ( v ) ,  (40) 

respectively. This means that  the present solution corresponds to the 
collision of a shock wave with an impulsive shell of null dust both of which 
are acompanied by an impulsive gravitat ional  wave. In this case, the 
formation of a space-time singularity along the hypersurface u = 1 - v 2 is 



1102 Tsoube l i s  and Wang 

the corresponding collision is of the general Case B type described after 
(37). However, the outcome of the collision is not typical. The  super- 
position of gravitat ional  wave and null dust in each leg of the incoming 
radiation is such tha t  the strength of the Coulomb-like gravitational field 
tha t  develops in Region IV after the collision remains finite as one ap- 
proaches the v > 0 par t  of the u = 1 - v 2 hypersurface. Specifically, 

and, thus, 

= 1 (43)  

�9 2(1 - v 2, v) = 1 (44) 
4v a �9 

Therefore, no singularity appears  toward the future of Region IV and the 
model can be extended analytically in this direction. 

Case C: m -- 2 
When m = 2 (k = ~-v/(3/8)), we find tha t  

~tI4 - ` H  = �89 2 - 1)H(u) + a6(u)  (45) 

and 
k~Io - H  = 4 k H ( v ) .  (46) 

Thus,  the typical Case C model represents the collision of a shock grav- 
i tational wave incident from the left with an impulsive shell of null dust 
which is incident from the right and is accompanied by a gravitational 
shock-plus- impulsive wave. The  behavior of this subclass of models af- 
ter collision is similar to the one obtained in cases A and B above, the 
main feature being the development of a space-like singularity along the 
u = 1 - v 4 arc of the (u, v) plane, unless a = - k  4- 1/2. Therefore, we will 
refrain from giving any further  details about  the m -- 2 metrics except for 
mentioning tha t  the a -- 0 and a = + 1 / 2  models a r e  physically distinct 
f rom their Case C partners.  When a = 0, the null dust shell incident 
f rom the right is not accompanied by any gravitational wave and, when 
a -- 4-1/2, it is only an impulsive wave that  accompanies the shell of null 
dust. 

Case D: m = 4 
When m = 4 (k -- eX/(7/16 ) ), the shock wave incident from the left in 

Case C is replaced by a gravitat ional plane wave with a smooth wavefront. 
This follows from the fact that ,  in this case, 

�9 0 ' - "  =  -IV = o. (47)  
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On the other hand, 

~I4-IlI = �89 2 - 1)H(u) + a6(u), (48) 

as in the previous cases, and 

~41_IV a(4a 2 - 1) + 12a2kv 4 + 12ak2v s + k(4k 2 - 1)v I2 
= 2(1 - v8) 2 H(u) 

+ a_l____~ + kv4 6(u). (49) 

From (48) and (49) it is easily deduced that  the behavior of the m = 4 
models after collision follows the pattern described earlier, in connection 
with Cases A-C. However, it is worth pointing out that  the present case 
illustrates in the clearest possible fashion the effect of secondary gravita- 
tional wave production which arises essentially in all the space-time models 
constructed in the present paper. Consider, in this direction, the a = 0 
subcase. For this particular model q/4 I - H I  = 0. Therefore, the null dust 
shell incident from the right is not accompanied by any gravitational ra- 
diation. According to (49), on the other hand, 

~ I 4 I - I Y  __ 3kv12 kv  4 
8(1 - v8) 2 g(u)  + ~ 6(u). (50) 

This shows that,  upon entering the body of the gravitational wave pulse 
incident f rom the left, the shell of null dust stimulates the emission of 
gravitational radiation in its own direction, besides becoming focused as 
it; proceeds [of. (14)]. 
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